Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{ μ -6,6'-Dimethoxy-2,2'-[propane-1,3divlbis(nitrilomethylidyne)]diphenolato}trinitratocopper(II)erbium(III) acetone solvate

Jing-Chun Xing, Yu-Long Bo, Bing Zhang and Wen-Zhi Li*

Department of Anesthesiology, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, People's Republic of China Correspondence e-mail: wenzhi_li2001@yahoo.cn

Received 3 September 2009; accepted 18 September 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.007 Å; R factor = 0.031; wR factor = 0.094; data-to-parameter ratio = 16.3.

In the title complex, [CuEr(C₁₉H₂₀N₂O₄)(NO₃)₃]·CH₃CO-CH₃, the Cu^{II} ion is coordinated in a square-planar environment by two O atoms and two N atoms of a Schiff base ligand. The Er^{III} ion is bis-chelated by three nitrate ligands and coordinated by four O atoms of the Schiff base ligand in a slightly distorted bicapped square-antiprismatic environment.

Related literature

For a similar copper-lanthanide complex of the same Schiff base ligand as in the title compound, see: Xing et al. (2008). For the isostuctural Sm analog, see: Wang et al. (2008).

Experimental

Crystal data

[CuEr(C19H20N2O4)(NO3)3]·C3H6O $\gamma = 72.22 \ (3)^{\circ}$ V = 1398.9 (6) Å³ $M_r = 815.28$ Triclinic, $P\overline{1}$ Z = 2a = 9.4142 (19) Åb = 12.151 (2) Å c = 13.439 (3) Å $\alpha = 73.06 (3)^{\circ}$ $\beta = 87.30(3)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR: Higashi, 1995) $T_{\min} = 0.280, \ T_{\max} = 0.460$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.094$ S = 1.126335 reflections

Mo $K\alpha$ radiation $\mu = 3.82 \text{ mm}^{-1}$ T = 295 K $0.34 \times 0.28 \times 0.20 \text{ mm}$

13866 measured reflections 6335 independent reflections 5654 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.035$

388 parameters H-atom parameters constrained $\Delta \rho_{\text{max}} = 1.65 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.99$ e Å⁻³

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002): program(s) used to solve structure: SHELXS97 (Sheldrick. 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (grant Nos. 30571784 and 30872450) and the Heilongjiang Key Laboratory of Anesthesia and Critical Care Research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2899).

References

- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, J.-H., Gao, P., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2008). Acta Cryst. E64, m344
- Xing, J.-C., Wang, J.-H., Yan, P.-F. & Li, G.-M. (2008). Acta Cryst. E64, m1206.

Acta Cryst. (2009). E65, m1299 [doi:10.1107/S1600536809037787]

{#-6,6'-Dimethoxy-2,2'-[propane-1,3diylbis(nitrilomethylidyne)]diphenolato}trinitratocopper(II)erbium(III) acetone solvate

J.-C. Xing, Y.-L. Bo, B. Zhang and W.-Z. Li

Comment

The molecular structure of the title complex (I) is shown in Fig. 1. The octadentate Schiff base ligand links the Cu and Er atoms into a dinuclear complex through two phenolate O atoms, which is similar to the coorination in other copper-lanthanide complexes of the same ligand (Xing *et al.*, 2008 and Wang *et al.*, 2008). The Er^{III} ion in (I) is ten-coordinated by four oxygen atoms from the ligand and six oxygen atoms from three nitrate ions. The Cu^{II} center is four-coordinate by two nitrogen atoms and two oxygen atoms from the ligand. The title compound is isostructural with the Sm analog (Wang *et al.*, 2008).

Experimental

The title complex was obtained by the treatment of copper(II) acetate monohydrate (0.0499 g, 0.25 mmol) with the Schiff base (0.0855 g, 0.25 mmol) in methanol/acetone (20 ml:5 ml) at room temperature. Then the mixture was refluxed for 3 h after the addition of Erbium (III) nitrate hexahydrate (0.1150 g, 0.25 mmol). The reaction mixture was cooled and filtered; diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis calculated for $C_{22}H_{26}CuN_5O_{14}Er$: C, 32.41; H, 3.21; Cu, 7.79; N, 8.59; Er, 20.52; found: C, 32.40; H, 3.24; Cu, 7.82; N, 8.50; Er, 20.44%.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C) and $U_{iso}(H) = 1.2U_{eq}(C)$ or C—H = 0.96 Å (methyl C) and with $U_{iso}(H) = 1.5U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. The solvent acetone molecule has been omitted for clarity.

{µ-6,6'-Dimethoxy-2,2'-[propane-1,3-diylbis(nitrilomethylidyne)] diphenolato}-trinitratocopper(II)erbium(III) acetone solvate

Crystal data

[CuEr(C ₁₉ H ₂₀ N ₂ O ₄)(NO ₃) ₃]·C ₃ H ₆ O	Z = 2
$M_r = 815.28$	$F_{000} = 804$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.936 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 9.4142 (19) Å	Cell parameters from 12092 reflections
b = 12.151 (2) Å	$\theta = 3.2 - 27.5^{\circ}$
c = 13.439 (3) Å	$\mu = 3.82 \text{ mm}^{-1}$
$\alpha = 73.06 \ (3)^{\circ}$	T = 295 K
$\beta = 87.30 \ (3)^{\circ}$	Prism, green
$\gamma = 72.22 \ (3)^{\circ}$	$0.34 \times 0.28 \times 0.20 \text{ mm}$
$V = 1398.9 (6) \text{ Å}^3$	

Data collection

Rigaku R-AXIS RAPID diffractometer	6335 independent reflections
Radiation source: fine-focus sealed tube	5654 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.035$
Detector resolution: 10.000 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 295 K	$\theta_{\min} = 3.2^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -15 \rightarrow 15$
$T_{\min} = 0.280, \ T_{\max} = 0.460$	$l = -17 \rightarrow 17$
13866 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.031$	H-atom parameters constrained
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_0^2) + (0.0461P)^2 + 0.9007P]$ where $P = (F_0^2 + 2F_c^2)/3$
S = 1.12	$(\Delta/\sigma)_{\text{max}} = 0.001$
6335 reflections	$\Delta \rho_{max} = 1.65 \text{ e } \text{\AA}^{-3}$
388 parameters	$\Delta \rho_{\rm min} = -0.99 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site cation: structure. iant direct vai methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Er1	0.284132 (18)	0.379681 (15)	0.235573 (12)	0.03650 (8)
Cu1	0.24382 (5)	0.25719 (4)	0.49507 (4)	0.03768 (12)
01	0.0400 (3)	0.5379 (3)	0.1950 (2)	0.0443 (7)
O2	0.1287 (3)	0.3758 (3)	0.3737 (2)	0.0428 (7)
O3	0.3995 (3)	0.2715 (3)	0.3972 (2)	0.0447 (7)
O4	0.5566 (3)	0.3518 (3)	0.2453 (2)	0.0455 (7)
O5	0.4222 (4)	0.2371 (3)	0.1410 (3)	0.0523 (8)
O6	0.3039 (4)	0.4163 (3)	0.0500 (2)	0.0505 (7)
07	0.4131 (5)	0.2827 (4)	-0.0280 (3)	0.0744 (11)
08	0.3112 (4)	0.5285 (3)	0.3148 (3)	0.0557 (8)
09	0.3219 (4)	0.5766 (3)	0.1492 (3)	0.0505 (7)
O10	0.3292 (5)	0.7046 (3)	0.2321 (4)	0.0770 (12)
011	0.1004 (4)	0.3040 (3)	0.1763 (3)	0.0548 (8)
012	0.2438 (4)	0.1704 (3)	0.3018 (3)	0.0619 (9)
013	0.0792 (5)	0.1221 (4)	0.2308 (4)	0.0813 (13)
O14	0.2030 (8)	0.0889 (4)	0.9258 (4)	0.115 (2)
N1	0.0630 (4)	0.2643 (3)	0.5754 (3)	0.0393 (7)
N2	0.3884 (4)	0.1296 (3)	0.6007 (3)	0.0492 (9)
N3	0.3809 (4)	0.3102 (4)	0.0518 (3)	0.0473 (9)
N4	0.3225 (4)	0.6072 (4)	0.2318 (3)	0.0493 (9)
N5	0.1395 (5)	0.1959 (4)	0.2355 (3)	0.0530 (10)
C1	-0.0108 (6)	0.6118 (5)	0.0893 (4)	0.0590 (13)
H1A	-0.1081	0.6675	0.0901	0.089*
H1B	-0.0157	0.5608	0.0477	0.089*
H1C	0.0578	0.6559	0.0604	0.089*
C2	-0.0648 (4)	0.5340 (4)	0.2695 (3)	0.0384 (8)
C3	-0.2116 (5)	0.6072 (4)	0.2560 (4)	0.0451 (10)
Н3	-0.2465	0.6643	0.1922	0.054*
C4	-0.3060 (5)	0.5955 (5)	0.3372 (4)	0.0549 (12)
H4	-0.4044	0.6455	0.3280	0.066*
C5	-0.2569 (5)	0.5111 (5)	0.4311 (4)	0.0499 (11)
Н5	-0.3220	0.5039	0.4851	0.060*
C6	-0.1079 (4)	0.4351 (4)	0.4466 (3)	0.0404 (9)

C7	-0.0130 (4)	0.4454 (3)	0.3666 (3)	0.0352 (8)
C8	-0.0651 (5)	0.3414 (4)	0.5451 (3)	0.0429 (9)
H8	-0.1403	0.3369	0.5921	0.051*
C9	0.0683 (6)	0.1750 (5)	0.6789 (3)	0.0544 (12)
H9A	-0.0292	0.1634	0.6914	0.065*
H9B	0.0911	0.2068	0.7325	0.065*
C10	0.1825 (7)	0.0557 (4)	0.6868 (4)	0.0637 (15)
H10A	0.1631	-0.0050	0.7463	0.076*
H10B	0.1730	0.0323	0.6249	0.076*
C11	0.3380 (7)	0.0585 (6)	0.6980 (4)	0.0768 (19)
H11A	0.3436	0.0932	0.7536	0.092*
H11B	0.4050	-0.0236	0.7176	0.092*
C12	0.5321 (5)	0.1042 (4)	0.5936 (4)	0.0511 (11)
H12	0.5889	0.0454	0.6504	0.061*
C13	0.6146 (5)	0.1543 (4)	0.5107 (3)	0.0425 (9)
C14	0.7721 (5)	0.1157 (4)	0.5224 (4)	0.0535 (12)
H14	0.8187	0.0614	0.5846	0.064*
C15	0.8563 (5)	0.1568 (4)	0.4440 (4)	0.0537 (12)
H15	0.9598	0.1312	0.4533	0.064*
C16	0.7885 (5)	0.2370 (4)	0.3499 (4)	0.0471 (10)
H16	0.8468	0.2649	0.2966	0.057*
C17	0.6367 (4)	0.2750 (4)	0.3353 (3)	0.0379 (8)
C18	0.5468 (4)	0.2343 (4)	0.4153 (3)	0.0368 (8)
C19	0.6431 (5)	0.3926 (5)	0.1567 (4)	0.0560 (12)
H19A	0.7455	0.3717	0.1796	0.084*
H19B	0.6036	0.4787	0.1279	0.084*
H19C	0.6369	0.3543	0.1046	0.084*
C20	0.3352 (10)	-0.0198 (6)	1.0866 (6)	0.093 (2)
H20A	0.3551	0.0547	1.0809	0.139*
H20B	0.4276	-0.0820	1.0879	0.139*
H20C	0.2851	-0.0422	1.1497	0.139*
C21	0.2392 (8)	-0.0040 (5)	0.9963 (5)	0.0739 (17)
C22	0.1955 (10)	-0.1108 (7)	0.9935 (7)	0.106 (3)
H22A	0.1320	-0.0899	0.9327	0.159*
H22B	0.1427	-0.1356	1.0547	0.159*
H22C	0.2834	-0.1758	0.9913	0.159*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Er1	0.03547 (11)	0.03660 (11)	0.02831 (10)	-0.00615 (8)	-0.00097 (7)	-0.00057 (8)
Cu1	0.0400 (2)	0.0358 (2)	0.0294 (2)	-0.0080 (2)	-0.00022 (19)	-0.0010 (2)
01	0.0421 (15)	0.0431 (16)	0.0349 (14)	-0.0055 (13)	-0.0055 (12)	0.0009 (13)
O2	0.0366 (14)	0.0444 (16)	0.0343 (14)	-0.0014 (12)	0.0014 (12)	-0.0032 (13)
O3	0.0329 (13)	0.0505 (17)	0.0325 (14)	-0.0021 (13)	-0.0021 (11)	0.0044 (13)
O4	0.0379 (14)	0.0522 (17)	0.0390 (15)	-0.0166 (13)	0.0020 (12)	0.0008 (14)
O5	0.0521 (17)	0.0488 (18)	0.0483 (18)	-0.0082 (15)	-0.0009 (15)	-0.0095 (15)
O6	0.0604 (19)	0.0447 (17)	0.0377 (16)	-0.0081 (15)	0.0055 (14)	-0.0077 (14)

07	0.081 (3)	0.094 (3)	0.053 (2)	-0.018 (2)	0.0095 (19)	-0.039 (2)
08	0.065 (2)	0.0537 (19)	0.0421 (17)	-0.0119 (17)	0.0031 (15)	-0.0118 (15)
O9	0.0586 (19)	0.0478 (17)	0.0427 (17)	-0.0194 (15)	0.0029 (15)	-0.0062 (14)
O10	0.098 (3)	0.047 (2)	0.090 (3)	-0.028 (2)	-0.012 (2)	-0.018 (2)
O11	0.0509 (18)	0.0488 (18)	0.057 (2)	-0.0146 (15)	0.0011 (15)	-0.0046 (16)
012	0.070 (2)	0.0414 (18)	0.063 (2)	-0.0108 (17)	-0.0010 (19)	-0.0039 (17)
O13	0.079 (3)	0.067 (2)	0.116 (4)	-0.041 (2)	0.025 (3)	-0.037 (3)
O14	0.172 (6)	0.067 (3)	0.074 (3)	-0.017 (3)	0.004 (3)	0.005 (3)
N1	0.0461 (18)	0.0417 (18)	0.0320 (16)	-0.0179 (16)	0.0033 (14)	-0.0088 (15)
N2	0.059 (2)	0.0365 (18)	0.0332 (18)	0.0025 (17)	0.0028 (17)	-0.0005 (15)
N3	0.0436 (19)	0.058 (2)	0.043 (2)	-0.0201 (18)	0.0057 (16)	-0.0151 (18)
N4	0.047 (2)	0.045 (2)	0.052 (2)	-0.0138 (17)	0.0009 (18)	-0.0081 (18)
N5	0.050 (2)	0.047 (2)	0.062 (2)	-0.0163 (18)	0.0155 (19)	-0.015 (2)
C1	0.063 (3)	0.054 (3)	0.039 (2)	0.000 (2)	-0.014 (2)	0.000 (2)
C2	0.0380 (19)	0.0355 (19)	0.041 (2)	-0.0053 (16)	-0.0058 (17)	-0.0156 (17)
C3	0.039 (2)	0.043 (2)	0.051 (2)	-0.0037 (18)	-0.0100 (19)	-0.017 (2)
C4	0.033 (2)	0.059 (3)	0.071 (3)	0.000 (2)	-0.007 (2)	-0.031 (3)
C5	0.037 (2)	0.060 (3)	0.058 (3)	-0.012 (2)	0.005 (2)	-0.027 (2)
C6	0.040 (2)	0.043 (2)	0.044 (2)	-0.0165 (17)	0.0017 (17)	-0.0168 (18)
C7	0.0326 (17)	0.0333 (18)	0.040 (2)	-0.0084 (15)	-0.0019 (16)	-0.0120 (16)
C8	0.046 (2)	0.051 (2)	0.041 (2)	-0.024 (2)	0.0119 (18)	-0.0196 (19)
C9	0.063 (3)	0.063 (3)	0.034 (2)	-0.027 (2)	0.006 (2)	-0.001 (2)
C10	0.107 (5)	0.042 (2)	0.040 (2)	-0.030 (3)	0.011 (3)	-0.004 (2)
C11	0.081 (4)	0.064 (3)	0.042 (3)	0.009 (3)	0.006 (3)	0.015 (3)
C12	0.059 (3)	0.040 (2)	0.037 (2)	0.006 (2)	-0.011 (2)	-0.0074 (19)
C13	0.043 (2)	0.037 (2)	0.042 (2)	-0.0014 (17)	-0.0072 (18)	-0.0139 (18)
C14	0.048 (2)	0.045 (2)	0.057 (3)	0.004 (2)	-0.024 (2)	-0.016 (2)
C15	0.041 (2)	0.050 (3)	0.072 (3)	-0.011 (2)	-0.010 (2)	-0.021 (2)
C16	0.038 (2)	0.045 (2)	0.062 (3)	-0.0136 (18)	0.000(2)	-0.020 (2)
C17	0.0371 (19)	0.0336 (19)	0.041 (2)	-0.0082 (16)	-0.0011 (17)	-0.0110 (17)
C18	0.0331 (18)	0.0357 (19)	0.039 (2)	-0.0049 (16)	-0.0026 (16)	-0.0117 (17)
C19	0.050 (3)	0.071 (3)	0.049 (3)	-0.031 (2)	0.012 (2)	-0.009 (2)
C20	0.135 (7)	0.064 (4)	0.082 (5)	-0.034 (4)	0.013 (5)	-0.022 (4)
C21	0.090 (4)	0.056 (3)	0.060 (3)	-0.010 (3)	0.014 (3)	-0.009 (3)
C22	0.116 (6)	0.086 (5)	0.099 (6)	-0.029 (5)	-0.023 (5)	0.001 (4)

Geometric parameters (Å, °)

Er1—O3	2.305 (3)	C2—C7	1.421 (6)
Er1—O2	2.307 (3)	C3—C4	1.377 (7)
Er1—O6	2.411 (3)	С3—Н3	0.9300
Er1—08	2.428 (4)	C4—C5	1.367 (7)
Er1-011	2.449 (4)	C4—H4	0.9300
Er1—O5	2.461 (3)	C5—C6	1.410 (6)
Er1—09	2.462 (3)	С5—Н5	0.9300
Er1—O1	2.466 (3)	C6—C7	1.367 (6)
Er1—O4	2.487 (3)	C6—C8	1.451 (6)
Er1—O12	2.577 (4)	С8—Н8	0.9300
Er1—N3	2.859 (4)	C9—C10	1.496 (7)

Er1—N4	2.880 (4)	С9—Н9А	0.9700
Cu1—O3	1.936 (3)	С9—Н9В	0.9700
Cu1—O2	1.938 (3)	C10-C11	1.490 (9)
Cu1—N1	1.966 (4)	C10—H10A	0.9700
Cu1—N2	1.970 (4)	C10—H10B	0.9700
O1—C2	1.372 (5)	C11—H11A	0.9700
O1—C1	1.453 (5)	C11—H11B	0.9700
O2—C7	1.334 (5)	C12—C13	1.424 (7)
O3—C18	1.331 (5)	C12—H12	0.9300
O4—C17	1.379 (5)	C13—C18	1.402 (6)
O4—C19	1.462 (5)	C13—C14	1.413 (6)
O5—N3	1.261 (5)	C14—C15	1.358 (8)
O6—N3	1.265 (5)	C14—H14	0.9300
O7—N3	1.213 (5)	C15—C16	1.391 (7)
O8—N4	1.265 (5)	C15—H15	0.9300
O9—N4	1.270 (5)	C16—C17	1.365 (6)
O10—N4	1.207 (5)	C16—H16	0.9300
O11—N5	1.272 (5)	C17—C18	1.406 (6)
O12—N5	1.261 (6)	С19—Н19А	0.9600
013—N5	1.215 (6)	С19—Н19В	0.9600
O14—C21	1.208 (7)	С19—Н19С	0.9600
N1—C8	1.277 (6)	C20—C21	1.479 (10)
N1—C9	1 486 (5)	С20—Н20А	0.9600
N2—C12	1 298 (6)	C20—H20B	0.9600
N2—C11	1 488 (6)	C20—H20C	0.9600
C1—H1A	0.9600	C21—C22	1 487 (10)
C1—H1B	0.9600	C22_H22A	0.9600
	0.9600	C22_H22B	0.9600
$C_2 = C_3$	1 384 (5)	C22_H22C	0.9600
02 E-1 02	(4.50,(10))	07 N2 0(121.2 (4)
03 = Er1 = 02	04.39(10)	$0/-N_{3}=06$	121.3(4)
03 = Er1 = 06	145.86 (11)	05 - N3 - 06	115.7 (4)
02—Er1— 06	146.93 (11)	$0/-N_3$ -Erl	1/6.1 (3)
03—Er1—08	/4.16 (12)	05-N3-Erl	59.1 (2)
02—Er1—08	73.18 (12)	O6-N3-ErI	56.8 (2)
06—Er1—08	119.26 (12)	010—N4—08	121.7 (5)
O3—ErI—OII	116.36 (11)	010—N4—09	123.3 (4)
02—ErI—OII	80.36 (12)	08—N4—09	114.9 (4)
06—Er1—011	72.98 (12)	O10—N4—Er1	175.8 (4)
O8—Er1—O11	143.46 (12)	O8—N4—Er1	56.7 (2)
O3—Er1—O5	97.20 (11)	O9—N4—Er1	58.3 (2)
O2—Er1—O5	136.85 (11)	O13—N5—O12	121.7 (4)
O6—Er1—O5	52.05 (11)	O13—N5—O11	122.9 (5)
O8—Er1—O5	142.31 (12)	O12—N5—O11	115.4 (4)
O11—Er1—O5	73.57 (12)	O1—C1—H1A	109.5
O3—Er1—O9	118.34 (12)	O1—C1—H1B	109.5
O2—Er1—O9	115.44 (12)	H1A—C1—H1B	109.5
O6—Er1—O9	67.51 (12)	01—C1—H1C	109.5
O8—Er1—O9	51.80 (11)	H1A—C1—H1C	109.5
O11—Er1—O9	124.51 (11)	H1B—C1—H1C	109.5

O5—Er1—O9	107.65 (11)	O1—C2—C3	125.3 (4)
O3—Er1—O1	127.79 (10)	O1—C2—C7	115.0 (3)
O2—Er1—O1	65.96 (10)	C3—C2—C7	119.7 (4)
O6—Er1—O1	86.32 (11)	C4—C3—C2	119.9 (4)
O8—Er1—O1	76.69 (11)	С4—С3—Н3	120.1
O11—Er1—O1	69.64 (11)	С2—С3—Н3	120.1
O5—Er1—O1	130.94 (11)	C5—C4—C3	120.8 (4)
O9—Er1—O1	70.46 (11)	С5—С4—Н4	119.6
O3—Er1—O4	65.50 (10)	C3—C4—H4	119.6
O2—Er1—O4	125.70 (10)	C4—C5—C6	120.4 (4)
O6—Er1—O4	87.19 (11)	С4—С5—Н5	119.8
O8—Er1—O4	74.01 (12)	С6—С5—Н5	119.8
O11—Er1—O4	142.51 (12)	C7—C6—C5	119.5 (4)
O5—Er1—O4	69.17 (11)	C7—C6—C8	122.3 (4)
O9—Er1—O4	72.36 (11)	C5—C6—C8	117.9 (4)
O1—Er1—O4	141.89 (11)	O2—C7—C6	123.6 (4)
O3—Er1—O12	67.96 (12)	O2—C7—C2	116.7 (4)
O2—Er1—O12	70.50 (12)	C6—C7—C2	119.7 (4)
O6—Er1—O12	104.96 (12)	N1—C8—C6	128.1 (4)
O8—Er1—O12	135.75 (12)	N1—C8—H8	115.9
O11—Er1—O12	50.34 (12)	С6—С8—Н8	115.9
O5—Er1—O12	66.38 (12)	N1—C9—C10	112.3 (4)
O9—Er1—O12	172.45 (11)	N1—C9—H9A	109.1
O1—Er1—O12	109.52 (12)	С10—С9—Н9А	109.1
O4—Er1—O12	108.45 (12)	N1—C9—H9B	109.1
O3—Er1—N3	122.43 (11)	С10—С9—Н9В	109.1
O2—Er1—N3	149.55 (11)	Н9А—С9—Н9В	107.9
O6—Er1—N3	26.04 (10)	С11—С10—С9	112.6 (5)
O8—Er1—N3	136.47 (12)	C11-C10-H10A	109.1
O11—Er1—N3	70.11 (11)	С9—С10—Н10А	109.1
O5—Er1—N3	26.06 (10)	С11—С10—Н10В	109.1
O9—Er1—N3	88.22 (12)	С9—С10—Н10В	109.1
O1—Er1—N3	108.59 (11)	H10A—C10—H10B	107.8
O4—Er1—N3	78.13 (11)	N2-C11-C10	112.7 (4)
O12—Er1—N3	84.66 (12)	N2	109.0
O3—Er1—N4	96.72 (12)	C10-C11-H11A	109.0
O2—Er1—N4	93.97 (12)	N2—C11—H11B	109.0
O6—Er1—N4	93.52 (12)	C10—C11—H11B	109.0
O8—Er1—N4	25.80 (11)	H11A—C11—H11B	107.8
O11—Er1—N4	138.97 (11)	N2—C12—C13	128.7 (4)
O5—Er1—N4	128.06 (12)	N2—C12—H12	115.7
O9—Er1—N4	26.01 (11)	C13—C12—H12	115.7
O1—Er1—N4	71.00 (11)	C18—C13—C14	118.5 (4)
O4—Er1—N4	71.98 (11)	C18—C13—C12	122.8 (4)
O12—Er1—N4	161.53 (13)	C14—C13—C12	118.6 (4)
N3—Er1—N4	113.03 (12)	C15—C14—C13	121.0 (4)
O3—Cu1—O2	79.02 (12)	C15—C14—H14	119.5
O3—Cu1—N1	170.25 (13)	C13—C14—H14	119.5
O2—Cu1—N1	91.24 (14)	C14—C15—C16	120.2 (4)

O3—Cu1—N2	91.25 (14)	C14—C15—H15	119.9
O2—Cu1—N2	169.75 (14)	C16—C15—H15	119.9
N1—Cu1—N2	98.50 (15)	C17—C16—C15	120.4 (5)
O3—Cu1—Er1	40.01 (8)	С17—С16—Н16	119.8
O2—Cu1—Er1	40.10 (9)	С15—С16—Н16	119.8
N1—Cu1—Er1	130.49 (10)	C16—C17—O4	125.9 (4)
N2—Cu1—Er1	129.72 (11)	C16—C17—C18	120.5 (4)
C2	117.8 (3)	O4—C17—C18	113.5 (3)
C2—O1—Er1	117.6 (2)	O3—C18—C13	122.0 (4)
C1—O1—Er1	122.3 (3)	O3—C18—C17	118.6 (3)
C7—O2—Cu1	128.8 (3)	C13—C18—C17	119.3 (4)
C7—O2—Er1	124.1 (2)	O4—C19—H19A	109.5
Cu1—O2—Er1	107.16 (12)	O4—C19—H19B	109.5
C18—O3—Cu1	129.0 (3)	H19A—C19—H19B	109.5
C18—O3—Er1	123.6 (2)	O4—C19—H19C	109.5
Cu1—O3—Er1	107.31 (12)	H19A—C19—H19C	109.5
C17—O4—C19	116.6 (3)	H19B—C19—H19C	109.5
C17—O4—Er1	117.7 (2)	C21—C20—H20A	109.5
C19—O4—Er1	124.7 (3)	C21—C20—H20B	109.5
N3—O5—Er1	94.9 (3)	H20A—C20—H20B	109.5
N3—O6—Er1	97.2 (2)	C21—C20—H20C	109.5
N4—O8—Er1	97.5 (3)	H20A—C20—H20C	109.5
N4—O9—Er1	95.7 (2)	H20B-C20-H20C	109.5
N5—O11—Er1	100.0 (3)	O14—C21—C20	122.2 (7)
N5—O12—Er1	94.1 (3)	O14—C21—C22	121.1 (7)
C8—N1—C9	115.0 (4)	C20—C21—C22	116.6 (6)
C8—N1—Cu1	124.7 (3)	C21—C22—H22A	109.5
C9—N1—Cu1	120.3 (3)	C21—C22—H22B	109.5
C12—N2—C11	115.1 (4)	H22A—C22—H22B	109.5
C12—N2—Cu1	123.6 (3)	C21—C22—H22C	109.5
C11—N2—Cu1	121.2 (3)	H22A—C22—H22C	109.5
O7—N3—O5	123.1 (4)	H22B—C22—H22C	109.5
O2—Er1—Cu1—O3	-162.7 (2)	N4—Er1—O6—N3	140.1 (3)
O6—Er1—Cu1—O3	96.4 (3)	O3—Er1—O8—N4	150.0 (3)
O8—Er1—Cu1—O3	-82.27 (18)	O2—Er1—O8—N4	-142.3 (3)
O11—Er1—Cu1—O3	133.69 (18)	O6-Er1-O8-N4	4.2 (3)
O5—Er1—Cu1—O3	59.59 (18)	O11—Er1—O8—N4	-96.9 (3)
O9—Er1—Cu1—O3	-84.40 (19)	O5—Er1—O8—N4	68.9 (3)
O1—Er1—Cu1—O3	-156.20 (17)	O9—Er1—O8—N4	1.7 (2)
O4—Er1—Cu1—O3	-10.88 (17)	O1-Er1-O8-N4	-73.8 (3)
O12—Er1—Cu1—O3	96.10 (19)	O4—Er1—O8—N4	81.6 (3)
N3—Er1—Cu1—O3	69.6 (2)	O12—Er1—O8—N4	-178.2 (2)
N4—Er1—Cu1—O3	-83.96 (18)	N3—Er1—O8—N4	29.3 (3)
O3—Er1—Cu1—O2	162.7 (2)	O3—Er1—O9—N4	-36.7 (3)
O6—Er1—Cu1—O2	-100.8 (3)	O2—Er1—O9—N4	36.9 (3)
O8—Er1—Cu1—O2	80.46 (17)	O6—Er1—O9—N4	-179.3 (3)
O11—Er1—Cu1—O2	-63.58 (17)	O8—Er1—O9—N4	-1.7 (2)
O5—Er1—Cu1—O2	-137.68 (17)	O11—Er1—O9—N4	132.7 (2)
O9—Er1—Cu1—O2	78.33 (18)	O5—Er1—O9—N4	-145.4 (2)

O1—Er1—Cu1—O2	6.52 (17)	O1—Er1—O9—N4	86.5 (3)
O4—Er1—Cu1—O2	151.84 (17)	O4—Er1—O9—N4	-84.9 (3)
O12—Er1—Cu1—O2	-101.18 (18)	N3—Er1—O9—N4	-163.0 (3)
N3—Er1—Cu1—O2	-127.69 (19)	O3—Er1—O11—N5	-19.5 (3)
N4—Er1—Cu1—O2	78.76 (17)	O2—Er1—O11—N5	-74.7 (3)
O3—Er1—Cu1—N1	176.9 (2)	O6—Er1—O11—N5	125.1 (3)
O2—Er1—Cu1—N1	14.1 (2)	O8—Er1—O11—N5	-118.5 (3)
O6—Er1—Cu1—N1	-86.7 (3)	O5—Er1—O11—N5	70.5 (3)
O8—Er1—Cu1—N1	94.60 (16)	O9—Er1—O11—N5	171.0 (2)
O11—Er1—Cu1—N1	-49.44 (16)	O1—Er1—O11—N5	-142.5 (3)
O5—Er1—Cu1—N1	-123.54 (16)	O4—Er1—O11—N5	64.0 (3)
O9—Er1—Cu1—N1	92.47 (17)	O12—Er1—O11—N5	-2.1 (2)
O1—Er1—Cu1—N1	20.67 (16)	N3—Er1—O11—N5	97.8 (3)
O4—Er1—Cu1—N1	165.99 (16)	N4—Er1—O11—N5	-159.7 (2)
O12—Er1—Cu1—N1	-87.03 (17)	O3—Er1—O12—N5	165.4 (3)
N3—Er1—Cu1—N1	-113.55 (18)	O2—Er1—O12—N5	95.7 (3)
N4—Er1—Cu1—N1	92.91 (16)	O6—Er1—O12—N5	-49.9 (3)
O3—Er1—Cu1—N2	-19.0 (2)	O8—Er1—O12—N5	132.2 (3)
O2—Er1—Cu1—N2	178.3 (2)	O11—Er1—O12—N5	2.1 (2)
O6—Er1—Cu1—N2	77.5 (3)	O5—Er1—O12—N5	-85.7 (3)
O8—Er1—Cu1—N2	-101.25 (19)	O1—Er1—O12—N5	41.5 (3)
O11—Er1—Cu1—N2	114.71 (18)	O4—Er1—O12—N5	-142.0(3)
O5—Er1—Cu1—N2	40.61 (19)	N3—Er1—O12—N5	-66.4 (3)
O9—Er1—Cu1—N2	-103.38 (19)	N4—Er1—O12—N5	129.8 (4)
O1—Er1—Cu1—N2	-175.18 (18)	O2—Cu1—N1—C8	-9.0 (4)
O4—Er1—Cu1—N2	-29.86 (18)	N2—Cu1—N1—C8	174.2 (4)
O12—Er1—Cu1—N2	77.12 (19)	Er1—Cu1—N1—C8	-18.1 (4)
N3—Er1—Cu1—N2	50.6 (2)	O2—Cu1—N1—C9	170.2 (3)
N4—Er1—Cu1—N2	-102.95 (18)	N2—Cu1—N1—C9	-6.6 (4)
O3—Er1—O1—C2	-26.6 (3)	Er1—Cu1—N1—C9	161.2 (3)
O2—Er1—O1—C2	-6.8 (3)	O3—Cu1—N2—C12	12.7 (4)
O6—Er1—O1—C2	154.7 (3)	O2—Cu1—N2—C12	30.9 (11)
O8—Er1—O1—C2	-84.0 (3)	N1—Cu1—N2—C12	-167.4 (4)
O11—Er1—O1—C2	81.5 (3)	Er1—Cu1—N2—C12	24.7 (5)
O5—Er1—O1—C2	125.4 (3)	O3—Cu1—N2—C11	-170.1 (4)
O9—Er1—O1—C2	-137.9 (3)	O2—Cu1—N2—C11	-151.9 (8)
O4—Er1—O1—C2	-124.6 (3)	N1—Cu1—N2—C11	9.8 (5)
O12—Er1—O1—C2	50.1 (3)	Er1—Cu1—N2—C11	-158.0 (4)
N3—Er1—O1—C2	141.0 (3)	Er1—O5—N3—O7	-176.2 (4)
N4—Er1—O1—C2	-110.3 (3)	Er1—O5—N3—O6	4.6 (4)
O3—Er1—O1—C1	170.8 (3)	Er1—06—N3—07	176.1 (4)
O2—Er1—O1—C1	-169.3 (4)	Er1—O6—N3—O5	-4.7 (4)
O6—Er1—O1—C1	-7.8 (3)	O3—Er1—N3—O5	16.1 (3)
O8—Er1—O1—C1	113.4 (4)	O2—Er1—N3—O5	-78.4 (3)
O11—Er1—O1—C1	-81.0 (3)	O6—Er1—N3—O5	175.0 (4)
O5—Er1—O1—C1	-37.2 (4)	O8—Er1—N3—O5	117.6 (3)
O9—Er1—O1—C1	59.6 (3)	O11—Er1—N3—O5	-93.2 (3)
O4—Er1—O1—C1	72.9 (4)	O9—Er1—N3—O5	139.0 (3)
O12—Er1—O1—C1	-112.4 (3)	O1—Er1—N3—O5	-152.4 (2)

N3_Fr1_01_C1	-216(4)	04—Fr1—N3—05	66.6(2)
N4—Er1—O1—C1	87.1 (3)	012—Er1—N3—O5	-43.5(2)
O3-Cu1-O2-C7	-1683(4)	N4—Er1—N3—O5	131.0 (2)
N1-Cu1-O2-C7	11 2 (3)	O3—Er1—N3—O6	-1590(2)
N2— $Cu1$ — $O2$ — $C7$	173 1 (8)	Ω_{2} Er1 N3 Ω_{6}	106.6 (3)
Fr1-Cu1-O2-C7	-1795(4)	08—Er1—N3—O6	-57.5(3)
$O_3 = C_{11} = O_2 = E_{11}$	11 21 (14)	011—Er1—N3—06	91.8 (3)
N1— $Cu1$ — $O2$ — $Er1$	-16929(15)	05-Er1-N3-06	-1750(4)
N2— $Cu1$ — $O2$ — $Er1$	-7.4(10)	09—Er1—N3—06	-36.1(3)
03 - Er1 - 02 - C7	169.3 (3)	01—Er1—N3—06	32.6 (3)
06 - Er1 - 02 - C7	-289(4)	04—Er1—N3—O6	-1084(3)
08 - Er1 - 02 - C7	89.2.(3)	012—Er1—N3—06	1414(3)
011 - Er1 - 02 - C7	-653(3)	N4—Er1—N3—O6	-441(3)
05 - Er1 - 02 - C7	-1184(3)	Er1-08-N4-010	175 4 (4)
09 - Er1 - 02 - 07	58 4 (3)	Er1-08-N4-09	-2.8(4)
01 - Er1 - 02 - C7	66(3)	Er1-09-N4-010	-1754(4)
04 - Er1 - 02 - 07	1444(3)	Fr1	28(4)
012 - Er1 - 02 - C7	-1165(3)	Ω_3 —Fr1—N4— Ω_8	-28.9(3)
N_{3} Fr1 Ω_{2} Ω_{7}	-794(4)	Ω^2 —Fr1—N4— Ω^8	20.9(3)
N_{4} = Fr_{1} = O_{2} = C_{7}	73 7 (3)	06-Fr1-N4-08	-1763(3)
03 - Er1 - 02 - Cu1	-10.23(13)	011—Fr1—N4—08	115.8 (3)
06 - Fr1 - 02 - Cu1	151 55 (15)	05— $Fr1$ — $N4$ — 08	-133.6(3)
08 - Er1 - 02 - Cu1	-90.32(15)	09 - Er1 - N4 - 08	-177.0(4)
011— $Fr1$ — 02 — $Cu1$	115 17 (15)	01 - Er1 - N4 - 08	98.8 (3)
$05 - \text{Er}_{1} - 02 - \text{Cu}_{1}$	621(2)	04—Er1—N4—08	-90.4(3)
09 - Er1 - 02 - Cu1	-121.08(14)	012—Fr1—N4—08	39(5)
01 - Er1 - 02 - Cu1	-172.93(18)	N_{3} Fr_{1} N_{4} O_{8}	-1585(3)
04 - Er1 - 02 - Cu1	-35.2(2)	Ω_3 —Er1—N4— Ω_9	138.5(3)
012 - Er1 - 02 - Cu1	63 97 (15)	02 = Er1 = N4 = 09	-1471(2)
$N_3 = Fr_1 = O_2 = Cu_1$	101.1(2)	02—Er1—N4—09	177.1(2)
N4— $Er1$ — $O2$ — $Cu1$	-105.78(15)	08—Er1—N4—09	177.0(4)
Ω_{2}^{-} Ω_{1}^{-} Ω_{2}^{-} Ω_{2	165.2 (4)	0.11 - Fr1 - N4 - 09	-67.2(3)
$N_2 = C_{11} = O_3 = C_{18}$	-181(4)	05—Er1—N4—09	43 4 (3)
$Fr1_01_03_1$	176.4(4)	03—Er1—N4—09	-84.2(3)
$\Omega^2 - \Omega^1 - \Omega^3 - Fr^1$	-11.24(14)	04—Er1—N4—09	86.6 (3)
$N_{2}^{2} - C_{11} - O_{3}^{2} - Fr^{1}$	165 51 (17)	012 - Fr1 - N4 - 09	-1791(3)
Ω_{2}^{2} Er1 Ω_{3}^{2} C18	-166 A (A)	N_{12} Er_{1} N_{4} O_{9}	179.1(3) 18 5 (3)
02 - Er1 - 03 - C18	100.4(4)	$F_{r1} = 012 \text{ N5} = 013$	18.5(3)
08 - Er1 - 03 - C18	-87.9(3)	$Fr1_012_N5_011$	-35(4)
011—Fr1— 03 —C18	129.8 (3)	Er1_012_N5_013	-1779(4)
05 - Er1 - 03 - C18	54.6 (3)	Fr1_011_N5_012	37(4)
09 - Er1 - 03 - 018	-59.9(3)	C1 - O1 - C2 - C3	-95(6)
01 - Er1 - 03 - C18	-1463(3)	$Fr1_01_2_3$	-172.9(3)
04 - Er1 - 03 - 018	-85(3)	C1 = 01 = C2 = C7	172.9(3)
012—Er1— 03 — $C18$	115 5 (3)	Er1-01-C2-C7	67(4)
N_{3} E_{r1} O_{3} C_{18}	47.6 (4)	01-C2-C3-C4	-179 3 (4)
N4 - Fr1 - O3 - C18	-75 2 (3)	C7-C2-C3-C4	12(6)
Ω^2 —Fr1— Ω^3 — Ω^1	10 24 (13)	$C_{2}^{2} = C_{3}^{2} = C_{4}^{2} = C_{5}^{2}$	-0.7(7)
06 - Fr1 - 03 - Cu1	-152 05 (16)	C_{3} C_{4} C_{5} C_{6}	0.7(7)
Co Lii OJ Cui	102.00 (10)		(i)

O8—Er1—O3—Cu1	88.81 (16)	C4—C5—C6—C7	-0.6 (7)
O11—Er1—O3—Cu1	-53.51 (19)	C4—C5—C6—C8	-175.5 (4)
O5—Er1—O3—Cu1	-128.70 (15)	Cu1—O2—C7—C6	-6.5 (6)
O9—Er1—O3—Cu1	116.75 (15)	Er1—O2—C7—C6	174.0 (3)
O1—Er1—O3—Cu1	30.3 (2)	Cu1—O2—C7—C2	173.7 (3)
O4—Er1—O3—Cu1	168.13 (19)	Er1—O2—C7—C2	-5.7 (5)
O12—Er1—O3—Cu1	-67.84 (16)	C5—C6—C7—O2	-178.7 (4)
N3—Er1—O3—Cu1	-135.74 (13)	C8—C6—C7—O2	-4.1 (6)
N4—Er1—O3—Cu1	101.46 (16)	C5—C6—C7—C2	1.0 (6)
O3—Er1—O4—C17	8.3 (3)	C8—C6—C7—C2	175.7 (4)
O2—Er1—O4—C17	33.0 (3)	O1—C2—C7—O2	-1.1 (5)
O6—Er1—O4—C17	-150.6 (3)	C3—C2—C7—O2	178.4 (4)
O8—Er1—O4—C17	87.8 (3)	O1—C2—C7—C6	179.1 (4)
O11—Er1—O4—C17	-93.7 (3)	C3—C2—C7—C6	-1.4 (6)
O5—Er1—O4—C17	-100.4 (3)	C9—N1—C8—C6	-176.5 (4)
O9—Er1—O4—C17	142.1 (3)	Cu1—N1—C8—C6	2.8 (6)
O1—Er1—O4—C17	129.0 (3)	C7—C6—C8—N1	6.0 (7)
O12—Er1—O4—C17	-45.8 (3)	C5-C6-C8-N1	-179.2 (4)
N3—Er1—O4—C17	-126.0 (3)	C8—N1—C9—C10	149.1 (4)
N4—Er1—O4—C17	114.8 (3)	Cu1—N1—C9—C10	-30.2 (6)
O3—Er1—O4—C19	176.5 (4)	N1—C9—C10—C11	74.7 (6)
O2—Er1—O4—C19	-158.7 (3)	C12—N2—C11—C10	-158.5 (5)
O6—Er1—O4—C19	17.6 (4)	Cu1—N2—C11—C10	24.0 (7)
O8—Er1—O4—C19	-104.0 (4)	C9—C10—C11—N2	-70.9 (6)
O11—Er1—O4—C19	74.5 (4)	C11—N2—C12—C13	178.9 (5)
O5—Er1—O4—C19	67.8 (4)	Cu1—N2—C12—C13	-3.7 (7)
O9—Er1—O4—C19	-49.7 (4)	N2-C12-C13-C18	-6.9 (8)
O1—Er1—O4—C19	-62.8 (4)	N2-C12-C13-C14	177.4 (5)
O12—Er1—O4—C19	122.4 (4)	C18—C13—C14—C15	1.4 (7)
N3—Er1—O4—C19	42.2 (4)	C12-C13-C14-C15	177.2 (5)
N4—Er1—O4—C19	-77.0 (4)	C13-C14-C15-C16	-0.8 (7)
O3—Er1—O5—N3	-166.4 (2)	C14—C15—C16—C17	-0.1 (7)
O2—Er1—O5—N3	133.5 (2)	C15—C16—C17—O4	-178.4 (4)
O6—Er1—O5—N3	-2.8 (2)	C15-C16-C17-C18	0.4 (7)
O8—Er1—O5—N3	-93.0 (3)	C19—O4—C17—C16	2.2 (6)
O11—Er1—O5—N3	78.2 (2)	Er1	171.3 (3)
O9—Er1—O5—N3	-43.5 (3)	C19—O4—C17—C18	-176.8 (4)
O1—Er1—O5—N3	35.6 (3)	Er1—O4—C17—C18	-7.6 (4)
O4—Er1—O5—N3	-106.1 (3)	Cu1—O3—C18—C13	13.4 (6)
O12—Er1—O5—N3	131.5 (3)	Er1-03-C18-C13	-170.7 (3)
N4—Er1—O5—N3	-62.0 (3)	Cu1—O3—C18—C17	-167.8 (3)
O3—Er1—O6—N3	32.7 (4)	Er1—O3—C18—C17	8.1 (5)
O2—Er1—O6—N3	-117.1 (3)	C14—C13—C18—O3	177.7 (4)
O8—Er1—O6—N3	138.3 (2)	C12—C13—C18—O3	2.1 (7)
O11—Er1—O6—N3	-79.4 (3)	C14—C13—C18—C17	-1.1 (6)
O5—Er1—O6—N3	2.8 (2)	C12—C13—C18—C17	-176.7 (4)
O9—Er1—O6—N3	140.4 (3)	C16—C17—C18—O3	-178.6 (4)
O1—Er1—O6—N3	-149.2 (3)	O4—C17—C18—O3	0.4 (5)
O4—Er1—O6—N3	68.4 (3)	C16—C17—C18—C13	0.2 (6)

O12—Er1—O6—N3 -40.0 (3) O4—C17—C18—C13 179.2 (4) Fig. 1

